Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
J Med Virol ; 96(1): e29346, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38178580

RESUMO

Orthohantaviruses, etiological agents of hemorrhagic fever with renal syndrome (HFRS) and hantavirus cardiopulmonary syndrome, pose a critical public health threat worldwide. Hantaan orthohantavirus (HTNV) outbreaks are particularly endemic in Gyeonggi Province in northern area of the Republic of Korea (ROK). Small mammals were collected from three regions in the Gyeonggi Province during 2017 and 2018. Serological and molecular prevalence of HTNV was 25/201 (12.4%) and 10/25 (40%), respectively. A novel nanopore-based diagnostic assay using a cost-efficient Flongle chip was developed to rapidly and sensitively detect HTNV infection in rodent specimens within 3 h. A rapid phylogeographical surveillance of HTNV at high-resolution phylogeny was established using the amplicon-based Flongle sequencing. In total, seven whole-genome sequences of HTNV were newly obtained from wild rodents collected in Paju-si (Gaekhyeon-ri) and Yeoncheon-gun (Hyeonga-ri and Wangnim-ri), Gyeonggi Province. Phylogenetic analyses revealed well-supported evolutionary divergence and genetic diversity, enhancing the resolution of the phylogeographic map of orthohantaviruses in the ROK. Incongruences in phylogenetic patterns were identified among HTNV tripartite genomes, suggesting differential evolution for each segment. These findings provide crucial insights into on-site diagnostics, genome-based surveillance, and the evolutionary dynamics of orthohantaviruses to mitigate hantaviral outbreaks in HFRS-endemic areas in the ROK.


Assuntos
Vírus Hantaan , Febre Hemorrágica com Síndrome Renal , Orthohantavírus , Animais , Filogenia , Vírus Hantaan/genética , Orthohantavírus/genética , Roedores , Mamíferos , República da Coreia/epidemiologia
2.
Front Microbiol ; 14: 1258091, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37840724

RESUMO

Introduction: Antisense oligonucleotides (ASOs) with therapeutic potential have recently been reported to target the SARS-CoV-2 genome. Peptide nucleic acids (PNAs)-based ASOs have been regarded as promising drug candidates, but intracellular delivery has been a significant obstacle. Here, we present novel modified PNAs, termed OPNAs, with excellent cell permeability that disrupt the RNA genome of SARS-CoV-2 and HCoV-OC43 by introducing cationic lipid moiety onto the nucleobase of PNA oligomer backbone. Methods: HCT-8 cells and Caco-2 cells were treated with 1 µM antisense OPNAs at the time of viral challenge and the Viral RNA levels were measured by RT-qPCR three days post infection. Results: NSP 14 targeting OPNA 5 and 11, reduced the viral titer to a half and OPNA 530, 531 and 533 lowered viral gene expression levels to less than 50% of control by targeting the 5' UTR region. Several modifications (oligo size and position, etc.) were introduced to enhance the efficacy of selected OPNAs. Improved OPNAs exhibited a dose-dependent reduction in viral replication and nucleoprotein (NP) protein. When a mixture of oligomers was applied to infected cells, viral titer and NP levels decreased by more than eightfold. Discussion: In this study, we have developed a modified PNA ASO platform with exceptional chemical stability, high binding affinity, and cellular permeability. These findings indicate that OPNAs are a promising platform for the development of antivirals to combat future pandemic viral infections that do not require a carrier.

3.
Mol Biotechnol ; 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37428433

RESUMO

Potential threat of smallpox bioterrorism and concerns related to the adverse effects of currently licensed live-virus vaccines suggest the need to develop novel vaccines with better efficacy against smallpox. Use of DNA vaccines containing specific antigen-encoding plasmids prevents the risks associated with live-virus vaccines, offering a promising alternative to conventional smallpox vaccines. In this study, we investigated the efficiency of toll-like receptor (TLR) ligands in enhancing the immunogenicity of smallpox DNA vaccines. BALB/c mice were immunized with a DNA vaccine encoding the vaccinia virus L1R protein, along with the cytosine-phosphate-guanine (CpG) motif as a vaccine adjuvant, and their immune response was analyzed. Administration of B-type CpG oligodeoxynucleotides (ODNs) as TLR9 ligands 24 h after DNA vaccination enhanced the Th2-biased L1R-specific antibody immunity in mice. Moreover, B-type CpG ODNs improved the protective effects of the DNA vaccine against the lethal Orthopoxvirus challenge. Therefore, use of L1R DNA vaccines with CpG ODNs as adjuvants is a promising approach to achieve effective immunogenicity against smallpox infection.

4.
Viruses ; 15(6)2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37376613

RESUMO

The recent detection of both Nova virus (NVAV) and Bruges virus (BRGV) in European moles (Talpa europaea) in Belgium and Germany prompted a search for related hantaviruses in the Iberian mole (Talpa occidentalis). RNAlater®-preserved lung tissue from 106 Iberian moles, collected during January 2011 to June 2014 in Asturias, Spain, were analyzed for hantavirus RNA by nested/hemi-nested RT-PCR. Pairwise alignment and comparison of partial L-segment sequences, detected in 11 Iberian moles from four parishes, indicated the circulation of genetically distinct hantaviruses. Phylogenetic analyses, using maximum-likelihood and Bayesian methods, demonstrated three distinct hantaviruses in Iberian moles: NVAV, BRGV, and a new hantavirus, designated Asturias virus (ASTV). Of the cDNA from seven infected moles processed for next generation sequencing using Illumina HiSeq1500, one produced viable contigs, spanning the S, M and L segments of ASTV. The original view that each hantavirus species is harbored by a single small-mammal host species is now known to be invalid. Host-switching or cross-species transmission events, as well as reassortment, have shaped the complex evolutionary history and phylogeography of hantaviruses such that some hantavirus species are hosted by multiple reservoir species, and conversely, some host species harbor more than one hantavirus species.


Assuntos
Infecções por Hantavirus , Toupeiras , Orthohantavírus , Animais , Filogenia , Espanha , Orthohantavírus/genética , Teorema de Bayes , Infecções por Hantavirus/veterinária
5.
Health Sci Rep ; 5(6): e856, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36210871

RESUMO

Background and aims: Despite global vaccination efforts, the number of confirmed cases of coronavirus disease 2019 (COVID-19) remains high. To overcome the crisis precipitated by the ongoing pandemic, characteristic studies such as virus diagnosis, isolation, and genome analysis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are necessary. Herein, we report the isolation and molecular characterization of SARS-CoV-2 from the saliva of patients who had tested positive for COVID-19 at Proving Ground in Taean County, Republic of Korea, in 2020. Methods: We analyzed the whole-genome sequence of SARS-CoV-2 isolated from the saliva samples of patients through next-generation sequencing. We also successfully isolated SARS-CoV-2 from the saliva samples of two patients by using cell culture, which was used to study the cytopathic effects and viral replication in Vero E6 cells. Results: Whole-genome sequences of the isolates, SARS-CoV-2 ADD-2 and ADD-4, obtained from saliva were identical, and phylogenetic analysis using Bayesian inference methods showed SARS-CoV-2 GH clade (B.1.497) genome-specific clustering. Typical coronavirus-like particles, with diameters of 70-120 nm, were observed in the SARS-CoV-2 infected Vero E6 cells using transmission electron microscopy. Conclusion: In conclusion, this report provides insights into the molecular diagnosis, isolation, genetic characteristics, and diversity of SARS-CoV-2 isolated from the saliva of patients. Further studies are needed to explore and monitor the evolution and characteristics of SARS-CoV-2 variants.

6.
PLoS Negl Trop Dis ; 16(9): e0010763, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36094957

RESUMO

BACKGROUND: Whole-genome sequencing plays a critical role in the genomic epidemiology intended to improve understanding the spread of emerging viruses. Dabie bandavirus, causing severe fever with thrombocytopenia syndrome (SFTS), is a zoonotic tick-borne virus that poses a significant public health threat. We aimed to evaluate a novel amplicon-based nanopore sequencing tool to obtain whole-genome sequences of Dabie bandavirus, also known as SFTS virus (SFTSV), and investigate the molecular prevalence in wild ticks, Republic of Korea (ROK). PRINCIPAL FINDINGS: A total of 6,593 ticks were collected from Gyeonggi and Gangwon Provinces, ROK in 2019 and 2020. Quantitative polymerase chain reaction revealed the presence of SFSTV RNA in three Haemaphysalis longicornis ticks. Two SFTSV strains were isolated from H. longicornis captured from Pocheon and Cheorwon. Multiplex polymerase chain reaction-based nanopore sequencing provided nearly full-length tripartite genome sequences of SFTSV within one hour running. Phylogenetic and reassortment analyses were performed to infer evolutionary relationships among SFTSVs. Phylogenetic analysis grouped SFTSV Hl19-31-4 and Hl19-31-13 from Pocheon with sub-genotype B-1 in all segments. SFTSV Hl20-8 was found to be a genomic organization compatible with B-1 (for L segment) and B-2 (for M and S segments) sub-genotypes, indicating a natural reassortment between sub-genotypes. CONCLUSION/SIGNIFICANCE: Amplicon-based next-generation sequencing is a robust tool for whole-genome sequencing of SFTSV using the nanopore platform. The molecular prevalence and geographical distribution of SFTSV enhanced the phylogeographic map at high resolution for sophisticated prevention of emerging SFTS in endemic areas. Our findings provide important insights into the rapid whole-genome sequencing and genetic diversity for the genome-based diagnosis of SFTSV in the endemic outbreak.


Assuntos
Infecções por Bunyaviridae , Sequenciamento por Nanoporos , Phlebovirus , Febre Grave com Síndrome de Trombocitopenia , Carrapatos , Animais , Infecções por Bunyaviridae/epidemiologia , Variação Genética , Reação em Cadeia da Polimerase Multiplex , Phlebovirus/genética , Filogenia , RNA , República da Coreia/epidemiologia
7.
Pathogens ; 11(9)2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36145479

RESUMO

Seoul virus (SEOV), an etiological agent for hemorrhagic fever with renal syndrome, poses a significant public health threat worldwide. This study evaluated the feasibility of a mobile Biomeme platform for facilitating rapid decision making of SEOV infection. A total of 27 Rattus norvegicus were collected from Seoul Metropolitan City and Gangwon Province in Republic of Korea (ROK), during 2016-2020. The serological and molecular prevalence of SEOV was 5/27 (18.5%) and 2/27 (7.4%), respectively. SEOV RNA was detected in multiple tissues of rodents using the Biomeme device, with differences in Ct values ranging from 0.6 to 2.1 cycles compared to a laboratory benchtop system. Using amplicon-based next-generation sequencing, whole-genome sequences of SEOV were acquired from lung tissues of Rn18-1 and Rn19-5 collected in Gangwon Province. Phylogenetic analysis showed a phylogeographical diversity of rat-borne orthohantavirus collected in Gangwon Province. We report a novel isolate of SEOV Rn19-5 from Gangwon Province. Our findings demonstrated that the Biomeme system can be applied for the molecular diagnosis of SEOV comparably to the laboratory-based platform. Whole-genome sequencing of SEOV revealed the phylogeographical diversity of orthohantavirus in the ROK. This study provides important insights into the field-deployable diagnostic assays and genetic diversity of orthohantaviruses for the rapid response to hantaviral outbreaks in the ROK.

8.
PLoS Negl Trop Dis ; 15(9): e0009707, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34582439

RESUMO

BACKGROUND: Hantavirus infection occurs through the inhalation of aerosolized excreta, including urine, feces, and saliva of infected rodents. The presence of Hantaan virus (HTNV) RNA or infectious particles in urine specimens of patient with hemorrhagic fever with renal syndrome (HFRS) remains to be investigated. METHODOLOGY/PRINCIPAL FINDINGS: We collected four urine and serum specimens of Republic of Korea Army (ROKA) patients with HFRS. We performed multiplex PCR-based next-generation sequencing (NGS) to obtain the genome sequences of clinical HTNV in urine specimens containing ultra-low amounts of viral genomes. The epidemiological and phylogenetic analyses of HTNV demonstrated geographically homogenous clustering with those in Apodemus agrarius captured in highly endemic areas, indicating that phylogeographic tracing of HTNV genomes reveals the potential infection sites of patients with HFRS. Genetic exchange analyses showed a genetic configuration compatible with HTNV L segment exchange in nature. CONCLUSION/SIGNIFICANCE: Our results suggest that whole or partial genome sequences of HTNV from the urine enabled to track the putative infection sites of patients with HFRS by phylogeographically linking to the zoonotic HTNV from the reservoir host captured at endemic regions. This report raises awareness among physicians for the presence of HTNV in the urine of patients with HFRS.


Assuntos
Genoma Viral , Vírus Hantaan/isolamento & purificação , Febre Hemorrágica com Síndrome Renal/virologia , Urina/virologia , Vírus Hantaan/classificação , Vírus Hantaan/genética , Febre Hemorrágica com Síndrome Renal/urina , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Reação em Cadeia da Polimerase Multiplex , Filogenia , República da Coreia
9.
Nat Commun ; 12(1): 288, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33436577

RESUMO

Vaccines and therapeutics are urgently needed for the pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here, we screen human monoclonal antibodies (mAb) targeting the receptor binding domain (RBD) of the viral spike protein via antibody library constructed from peripheral blood mononuclear cells of a convalescent patient. The CT-P59 mAb potently neutralizes SARS-CoV-2 isolates including the D614G variant without antibody-dependent enhancement effect. Complex crystal structure of CT-P59 Fab/RBD shows that CT-P59 blocks interaction regions of RBD for angiotensin converting enzyme 2 (ACE2) receptor with an orientation that is notably different from previously reported RBD-targeting mAbs. Furthermore, therapeutic effects of CT-P59 are evaluated in three animal models (ferret, hamster, and rhesus monkey), demonstrating a substantial reduction in viral titer along with alleviation of clinical symptoms. Therefore, CT-P59 may be a promising therapeutic candidate for COVID-19.


Assuntos
Anticorpos Neutralizantes/farmacologia , Tratamento Farmacológico da COVID-19 , Ligação Proteica/efeitos dos fármacos , SARS-CoV-2/efeitos dos fármacos , Glicoproteína da Espícula de Coronavírus/efeitos dos fármacos , Enzima de Conversão de Angiotensina 2/química , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Chlorocebus aethiops , Modelos Animais de Doenças , Feminino , Furões , Humanos , Leucócitos Mononucleares , Macaca mulatta , Masculino , Mesocricetus , Modelos Moleculares , Conformação Proteica , Glicoproteína da Espícula de Coronavírus/química , Células Vero
10.
Artigo em Inglês | MEDLINE | ID: mdl-33014888

RESUMO

Genomic reassortment of segmented RNA virus strains is an important evolutionary mechanism that can generate novel viruses with profound effects on human and animal health, such as the H1N1 influenza pandemic in 2009 arising from reassortment of two swine influenza viruses. Reassortment is not restricted to influenza virus and has been shown to occur in members of the order Bunyavirales. The majority of reassortment events occurs between closely related lineages purportedly due to molecular constraints during viral packaging. In the original report of Camp Ripley virus (RPLV), a newfound hantavirus in the northern short-tailed shrew (Blarina brevicauda), phylogenetic incongruence between different genomic segments suggested reassortment. We have expanded sampling to include RPLV sequences amplified from archival tissues of 36 northern short-tailed shrews collected in 12 states (Arkansas, Iowa, Kansas, Maryland, Massachusetts, Michigan, Minnesota, New Hampshire, Ohio, Pennsylvania, Virginia, Wisconsin), and one southern short-tailed shrew (Blarina carolinensis) from Florida, within the United States. Using Bayesian phylogenetic analysis and Graph-incompatibility-based Reassortment Finder, we identified multiple instances of reassortment that spanned the Hantaviridae phylogenetic tree, including three highly divergent, co-circulating lineages of the M segment that have reassorted with a conserved L segment in multiple populations of B. brevicauda. In addition to identifying the first known mobatvirus-like M-segment sequences from a soricid host and only the second from a eulipotyphlan mammal, our results suggest that reassortment may be common between divergent virus strains and provide strong justification for expanded spatial, temporal, and taxonomic analyses of segmented viruses.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Musaranhos , Animais , Teorema de Bayes , Florida , Filogenia , Vírus Reordenados/genética , Estados Unidos , Virginia
11.
PLoS Negl Trop Dis ; 14(10): e0008714, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33035222

RESUMO

BACKGROUND: Hantaan orthohantavirus (Hantaan virus, HTNV), harbored by Apodemus agrarius (the striped field mouse), causes hemorrhagic fever with renal syndrome (HFRS) in humans. Viral genome-based surveillance at new expansion sites to identify HFRS risks plays a critical role in tracking the infection source of orthohantavirus outbreak. In the Republic of Korea (ROK), most studies demonstrated the serological prevalence and genetic diversity of orthohantaviruses collected from HFRS patients or rodents in Gyeonggi Province. Gangwon Province is a HFRS-endemic area with a high incidence of patients and prevalence of infected rodents, ROK. However, the continued epidemiology and surveillance of orthohantavirus remain to be investigated. METHODOLOGY/PRINCIPAL FINDINGS: Whole-genome sequencing of HTNV was accomplished in small mammals collected in Gangwon Province during 2015-2018 by multiplex PCR-based next-generation sequencing. To elucidate the geographic distribution and molecular diversity of viruses, we conducted phylogenetic analyses of HTNV tripartite genomes. We inferred the hybrid zone using cline analysis to estimate the geographic contact between two different HTNV lineages in the ROK. The graph incompatibility based reassortment finder performed reassortment analysis. A total of 12 HTNV genome sequences were completely obtained from A. agrarius newly collected in Gangwon Province. The phylogenetic and cline analyses demonstrated the genetic diversity and hybrid zone of HTNV in the ROK. Genetic exchange analysis suggested the possibility of reassortments in Cheorwon-gun, a highly HFRS-endemic area. CONCLUSIONS/SIGNIFICANCE: The prevalence and distribution of HTNV in HFRS-endemic areas of Gangwon Province enhanced the phylogeographic map for orthohantavirus outbreak monitoring in ROK. This study revealed the hybrid zone reflecting the genetic diversity and evolutionary dynamics of HTNV circulating in Gangwon Province. The results arise awareness of rodent-borne orthohantavirus diseases for physicians in the endemic area of ROK.


Assuntos
Genoma Viral , Vírus Hantaan/genética , Murinae/virologia , Animais , Anticorpos Antivirais , Doenças Endêmicas , Filogenia , República da Coreia
12.
Viruses ; 12(9)2020 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-32872451

RESUMO

Severe fever with thrombocytopenia syndrome virus (SFTSV) is an emerging human pathogen, endemic in areas of China, Japan, and the Korea (KOR). It is primarily transmitted through infected ticks and can cause a severe hemorrhagic fever disease with case fatality rates as high as 30%. Despite its high virulence and increasing prevalence, molecular and functional studies in situ are scarce due to the limited availability of high-titer SFTSV exposure stocks. During the course of field virologic surveillance in 2017, we detected SFTSV in ticks and in a symptomatic soldier in a KOR Army training area. SFTSV was isolated from the ticks producing a high-titer viral exposure stock. Through the use of advanced genomic tools, we present here a complete, in-depth characterization of this viral stock, including a comparison with both the virus in its arthropod source and in the human case, and an in vivo study of its pathogenicity. Thanks to this detailed characterization, this SFTSV viral exposure stock constitutes a quality biological tool for the study of this viral agent and for the development of medical countermeasures, fulfilling the requirements of the main regulatory agencies.


Assuntos
Infecções por Bunyaviridae/virologia , Febres Hemorrágicas Virais/virologia , Phlebovirus/isolamento & purificação , Adulto , Animais , Infecções por Bunyaviridae/genética , Infecções por Bunyaviridae/metabolismo , Feminino , Genoma Viral , Humanos , Masculino , Camundongos , Phlebovirus/fisiologia , Filogenia , Receptor de Interferon alfa e beta/genética , Receptor de Interferon alfa e beta/metabolismo , República da Coreia , Carrapatos/virologia
14.
Clin Infect Dis ; 70(3): 464-473, 2020 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-30891596

RESUMO

BACKGROUND: Endemic outbreaks of hantaviruses pose a critical public health threat worldwide. Hantaan orthohantavirus (HTNV) causes hemorrhagic fever with renal syndrome (HFRS) in humans. Using comparative genomic analyses of partial and nearly complete sequences of HTNV from humans and rodents, we were able to localize, with limitations, the putative infection locations for HFRS patients. Partial sequences might not reflect precise phylogenetic positions over the whole-genome sequences; finer granularity of rodent sampling reflects more precisely the circulation of strains. METHODS: Five HFRS specimens were collected. Epidemiological surveys were conducted with the patients during hospitalization. We conducted active surveillance at suspected HFRS outbreak areas. We performed multiplex polymerase chain reaction-based next-generation sequencing to obtain the genomic sequence of HTNV from patients and rodents. The phylogeny of human- and rodent-derived HTNV was generated using the maximum likelihood method. For phylogeographic analyses, the tracing of HTNV genomes from HFRS patients was defined on the bases of epidemiological interviews, phylogenetic patterns of the viruses, and geographic locations of HTNV-positive rodents. RESULTS: The phylogeographic analyses demonstrated genetic clusters of HTNV strains from clinical specimens, with HTNV circulating in rodents at suspected sites of patient infections. CONCLUSIONS: This study demonstrates a major shift in molecular epidemiological surveillance of HTNV. Active targeted surveillance was performed at sites of suspected infections, allowing the high-resolution phylogeographic analysis to reveal the site of emergence of HTNV. We posit that this novel approach will make it possible to identify infectious sources, perform disease risk assessment, and implement preparedness against vector-borne viruses.


Assuntos
Vírus Hantaan , Febre Hemorrágica com Síndrome Renal , Orthohantavírus , Orthohantavírus/genética , Febre Hemorrágica com Síndrome Renal/epidemiologia , Humanos , Filogenia , Conduta Expectante
15.
Sci Rep ; 9(1): 16631, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31719616

RESUMO

Orthohantaviruses, negative-sense single-strand tripartite RNA viruses, are a global public health threat. In humans, orthohantavirus infection causes hemorrhagic fever with renal syndrome or hantavirus cardiopulmonary syndrome. Whole-genome sequencing of the virus helps in identification and characterization of emerging or re-emerging viruses. Next-generation sequencing (NGS) is a potent method to sequence the viral genome, using molecular enrichment methods, from clinical specimens containing low virus titers. Hence, a comparative study on the target enrichment NGS methods is required for whole-genome sequencing of orthohantavirus in clinical samples. In this study, we used the sequence-independent, single-primer amplification, target capture, and amplicon NGS for whole-genome sequencing of Hantaan orthohantavirus (HTNV) from rodent specimens. We analyzed the coverage of the HTNV genome based on the viral RNA copy number, which is quantified by real-time quantitative PCR. Target capture and amplicon NGS demonstrated a high coverage rate of HTNV in Apodemus agrarius lung tissues containing up to 103-104 copies/µL of HTNV RNA. Furthermore, the amplicon NGS showed a 10-fold (102 copies/µL) higher sensitivity than the target capture NGS. This report provides useful insights into target enrichment NGS for whole-genome sequencing of orthohantaviruses without cultivating the viruses.


Assuntos
Vírus Hantaan/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Pulmão/virologia , Murinae/virologia , Sequenciamento Completo do Genoma/métodos , Animais , Genoma Viral/genética , Filogenia , Reação em Cadeia da Polimerase em Tempo Real , República da Coreia
16.
Viruses ; 11(9)2019 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-31540127

RESUMO

With the recent discovery of genetically distinct hantaviruses (family Hantaviridae) in shrews (order Eulipotyphla, family Soricidae), the once-conventional view that rodents (order Rodentia) served as the primordial reservoir hosts now appears improbable. The newly identified soricid-borne hantaviruses generally demonstrate well-resolved lineages organized according to host taxa and geographic origin. However, beginning in 2007, we detected sequences that did not conform to the prototypic hantaviruses associated with their soricid host species and/or geographic locations. That is, Eurasian common shrews (Sorexaraneus), captured in Hungary and Russia, were found to harbor hantaviruses belonging to two separate and highly divergent lineages. We have since accumulated additional examples of these highly distinctive hantavirus sequences in the Laxmann's shrew (Sorexcaecutiens), flat-skulled shrew (Sorexroboratus) and Eurasian least shrew (Sorexminutissimus), captured at the same time and in the same location in the Sakha Republic in Far Eastern Russia. Pair-wise alignment and phylogenetic analysis of partial and full-length S-, M- and/or L-segment sequences indicate that a distinct hantavirus species related to Altai virus (ALTV), first reported in a Eurasian common shrew from Western Siberia, was being maintained in these closely related syntopic soricine shrew species. These findings suggest that genetic variants of ALTV might have resulted from ancient host-switching events with subsequent diversification within the Soricini tribe in Eurasia.


Assuntos
Variação Genética , Interações entre Hospedeiro e Microrganismos/genética , Especificidade de Hospedeiro , Orthohantavírus/genética , Filogenia , Musaranhos/virologia , Animais , Evolução Molecular , Feminino , Orthohantavírus/classificação , Orthohantavírus/isolamento & purificação , Hungria , Masculino , Federação Russa
17.
Sci Rep ; 9(1): 10239, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31308502

RESUMO

The recent discovery of genetically distinct shrew- and mole-borne viruses belonging to the newly defined family Hantaviridae (order Bunyavirales) has spurred an extended search for hantaviruses in RNAlater®-preserved lung tissues from 215 bats (order Chiroptera) representing five families (Hipposideridae, Megadermatidae, Pteropodidae, Rhinolophidae and Vespertilionidae), collected in Vietnam during 2012 to 2014. A newly identified hantavirus, designated Dakrông virus (DKGV), was detected in one of two Stoliczka's Asian trident bats (Aselliscus stoliczkanus), from Dakrông Nature Reserve in Quang Tri Province. Using maximum-likelihood and Bayesian methods, phylogenetic trees based on the full-length S, M and L segments showed that DKGV occupied a basal position with other mobatviruses, suggesting that primordial hantaviruses may have been hosted by ancestral bats.


Assuntos
Quirópteros/virologia , Orthohantavírus/classificação , Orthohantavírus/genética , Animais , Teorema de Bayes , Evolução Biológica , Quirópteros/genética , Infecções por Hantavirus/virologia , Pulmão/virologia , Filogenia , Vírus de RNA , RNA Viral , Análise de Sequência de DNA , Vietnã
18.
Eur J Clin Microbiol Infect Dis ; 38(4): 793-800, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30693422

RESUMO

Human adenovirus (HAdV) is a common pathogen causing respiratory infections with outbreaks reported in the military and community. However, little information is available on the shedding kinetics. We performed a prospective study of immunocompetent adults confirmed with HAdV respiratory infection by multiplex real-time PCR during an outbreak of HAdV-55. Consecutive respiratory specimens of sputum or nasopharyngeal swab were collected from each patient every 2 days. Viral load was measured by real-time quantitative PCR. Of 32 enrolled patients, 27 (84.4%) had pneumonia. Five patients (15.6%) received cidofovir. Viral load was highest in the earliest samples at 8.69 log10 copies/mL. In a linear regression model, viral load declined consistently in a log-linear fashion at the rate of - 0.15 log10 copies/mL per day (95% confidence interval (CI): - 0.18, - 0.12; R2 = 0.32). However, the regression model estimated the viral shedding duration to be 55 days. The rate of decline in viral load did not differ between patients who received cidofovir and who did not. Patients with prominent respiratory symptoms or extensive involvement on chest radiograph had higher volume of viral excretion. Prolonged viral shedding was observed in otherwise healthy adults with HAdV-55 respiratory infection. This finding should be considered in the establishment of infection control and prevention strategies.


Assuntos
Infecções por Adenovirus Humanos/diagnóstico , Adenovírus Humanos/fisiologia , Infecções Respiratórias/virologia , Eliminação de Partículas Virais , Infecções por Adenovirus Humanos/tratamento farmacológico , Adenovírus Humanos/classificação , Adolescente , Surtos de Doenças , Humanos , Imunocompetência , Modelos Lineares , Masculino , Nasofaringe/virologia , Pneumonia Viral/diagnóstico , Estudos Prospectivos , Reação em Cadeia da Polimerase em Tempo Real , República da Coreia/epidemiologia , Escarro/virologia , Carga Viral , Adulto Jovem
19.
Am J Trop Med Hyg ; 99(2): 470-476, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29869603

RESUMO

Rodent-borne pathogens pose a critical public health threat in urban areas. An epidemiological survey of urban rodents was conducted from 2006 to 2010 at the U.S. Army Garrison (USAG), Seoul, Republic of Korea (ROK), to determine the prevalence of Seoul virus (SEOV), a rodent-borne hantavirus. A total of 1,950 rodents were captured at USAG, Yongsan, near/in 19.4% (234/1,206) of the numbered buildings. Annual mean rodent infestation rates were the highest for food service facilities, e.g., the Dragon Hill Lodge complex (38.0 rodents) and the Hartell House (18.8 rodents). The brown rat, Rattus norvegicus, accounted for 99.4% (1,939/1,950) of all the rodents captured in the urban area, whereas only 0.6% (11/1,950) of the rodents was house mice (Mus musculus). In November 2006, higher numbers of rats captured were likely associated with climatic factors, e.g., rainfall and temperatures as rats sought harborage in and around buildings. Only 4.7% (34/718) of the rodents assayed for hantaviruses was serologically positive for SEOV. A total of 8.8% (3/34) R. norvegicus were positive for SEOV RNA by reverse transcription polymerase chain reaction, of which two SEOV strains were completely sequenced and characterized. The 3' and 5' terminal sequences revealed incomplete complementary genomic configuration. Seoul virus strains Rn10-134 and Rn10-145 formed a monophyletic lineage with the prototype SEOV strain 80-39. Seoul virus Medium segment showed the highest evolutionary rates compared with the Large and Small segments. In conclusion, this report provides significant insights into continued rodent-borne disease surveillance programs that identify hantaviruses for analysis of disease risk assessments and development of mitigation strategies.


Assuntos
Genoma Viral , Instalações Militares , Doenças dos Roedores/epidemiologia , Roedores/virologia , Vírus Seoul/genética , Animais , Genômica , Infecções por Hantavirus/epidemiologia , Camundongos/virologia , Filogenia , Prevalência , RNA Viral/genética , Chuva , Ratos/virologia , República da Coreia/epidemiologia , Vírus Seoul/isolamento & purificação , Análise de Sequência de DNA , Temperatura
20.
Emerg Infect Dis ; 24(2): 249-257, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29350137

RESUMO

Seoul virus (SEOV) poses a worldwide public health threat. This virus, which is harbored by Rattus norvegicus and R. rattus rats, is the causative agent of hemorrhagic fever with renal syndrome (HFRS) in humans, which has been reported in Asia, Europe, the Americas, and Africa. Defining SEOV genome sequences plays a critical role in development of preventive and therapeutic strategies against the unique worldwide hantavirus. We applied multiplex PCR-based next-generation sequencing to obtain SEOV genome sequences from clinical and reservoir host specimens. Epidemiologic surveillance of R. norvegicus rats in South Korea during 2000-2016 demonstrated that the serologic prevalence of enzootic SEOV infections was not significant on the basis of sex, weight (age), and season. Viral loads of SEOV in rats showed wide dissemination in tissues and dynamic circulation among populations. Phylogenetic analyses showed the global diversity of SEOV and possible genomic configuration of genetic exchanges.


Assuntos
Variação Genética , Febre Hemorrágica com Síndrome Renal/virologia , Reação em Cadeia da Polimerase Multiplex , Vírus Seoul/genética , Animais , Genoma Viral , Saúde Global , Febre Hemorrágica com Síndrome Renal/epidemiologia , Humanos , Filogeografia , RNA Viral/genética , Ratos , República da Coreia/epidemiologia , Estudos Retrospectivos , Estações do Ano , Testes Sorológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA